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Abstract

The SARS-CoV-2 infectious outbreak has rapidly
spread across the globe and precipitated varying
policies to effectuate physical distancing to ame-
liorate its impact. In this study, we propose a
new hybrid machine learning model, SIRNET, for
forecasting the spread of the COVID-19 pandemic
that couples with the epidemiological models. We
use categorized spatiotemporally explicit cellphone
mobility data as surrogate markers for physical dis-
tancing, along with population-weighted density
and other local data points.
We demonstrate at varying geographical granular-
ity that the spectrum of physical distancing op-
tions currently being discussed among policy lead-
ers have epidemiologically significant differences
in consequences, ranging from viral extinction to
near-complete population prevalence. The current
mobility inflection points vary across geographical
regions. Experimental results from SIRNET estab-
lish preliminary bounds on such localized mobility
that asymptotically induce containment. The model
can support in studying non-pharmacological inter-
ventions and approaches that minimize societal col-
lateral damage and control mechanisms for an ex-
tended period of time.

1 Introduction
Machine learning techniques have offered solutions to many
modeling problems, assuming there is abundant data to train
a system [Obermeyer and Emanuel, 2016]. With the rapid
impact of COVID-19, several research groups have begun
exploring statistical and mathematical models to study the
spread of the disease. One of the early studies of COVID-
19 using AI [Bogoch et al., 2020] identified the global spread
of the disease through commercial airlines. Numerous ap-
proaches to forecasting and predicting the spread of COVID-
19 have since been explored. These include mathemati-
cal forecasting models [Petropoulos and Makridakis, 2020;
Ribeiro et al., 2020], fitting parameters to epidemic models
[Roda et al., 2020], and machine learning models [Wang et
al., 2020]. In response to efforts for controlling the spread of

COVID-19 across the globe, many research groups have be-
gun a more relevant problem is including the effects of non-
pharmaceutical intervention as a factor in forecasting mod-
els [Brauner et al., 2020], whether it is epidemic models
[Dehning et al., 2020; Lorch et al., 2020], or machine learn-
ing [Yang et al., 2020; Tomar and Gupta, 2020]. There
are several inefficiencies with the current data available for
COVID-19 research, such as limited testing capabilities and
high variability within the testing rate (e.g., 22.08/1,000 in
Italy, 11.16/1,000 in the US, to 0.27/1,000 in India [Hasell
et al., 2020; Ryan-Mosley, 2020]), inconsistencies in report-
ing (under-reporting), and publicly available data on infec-
tion rates currently are unreliable. Particularly lacking is
an understanding of the underlying factors which impact the
spread, accuracy and availability of reported cases on a small
scale, and quantifiable metrics for how social distancing and
quarantine efforts impact the spread. To overcome these
challenges in providing forecasting models of the spread of
COVID-19, we combine compartmentalized models with a
data-driven machine learning approach. In doing so, we ad-
dress a potential pitfall of machine learning (ensuring com-
pliance with the laws of epidemic dynamics) and a limitation
of epidemiological models (enabling the creation of complex
mappings from available data sources to critical modeling pa-
rameters).

2 Methodology
Here, we formalize the general form of this problem. We
then propose a hybrid neural-compartmental model to per-
form forecasting given historical case and mobility data.

2.1 Problem Statement
We are given a set of time series that temporally enumer-
ates active, recovered, and fatal cases of COVID-19. The
data exhibits varying levels of geographical granularity, i.e.,
grouping by country, region, sub-region, etc., and irregular
onset of the first case. Each sequence Y ∈ RT×2 comprises
T timesteps, which varies between samples, each with the
count of active cases and recovered cases. Provided this data,
we desire to learn a model that is able to forecast future val-
ues of Y. To aid in improving the fit, additional factors
should be considered that may impact the infection, recov-
ery, or mortality rates pertaining to the disease. We refer
to these additional attributes as features which can be either
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Figure 1: High level visualization of the SIRNET architecture.

scalar x ∈ RF , spatial X ∈ RF1×F2×⋅⋅⋅×Fn , and/or temporal
X ∈ RT×F (X ∈ RT×F1×⋅⋅⋅×Fn if spatiotemporal)1. With
these definitions, the learning problem can be posed as fol-
lows (also see (1)). Given historical case data Y and rele-
vant attributes X for an area or multiple areas, can we model
(M) the latent trends of this data to forecast future cases of
COVID-19?

minimize cost (Yt+k,M(X t, Yt; θ0, θ1, . . . )) (1)

2.2 Proposed Hybrid Model: SIRNET

In this research, we focus on learning and forecasting the
trends in time series via a hybrid model of neural networks
and epidemiological models. The forecasting network, re-
ferred to as SIRNET (named after the foundational epidemi-
ological model), learns from i) a sequence of prior trends that
carry long-term contextual information (global time-series);
ii) more recent data inputs that are raw (local time-series)
and can inform the forecasting of any abrupt changes; and
iii) compose differential equations as a neural network. One
of the first papers on solving differential equations using neu-
ral networks was proposed by [Dissanayake and Phan-Thien,
1994], followed by several groups recently [Han et al., 2018;
Berg and Nyström, 2018; Sirignano and Spiliopoulos, 2018].

2.3 SEIR Cell
One standard approach to epidemic modeling is compartmen-
talized models such as SEIR - with Susceptible S, Exposed
E (latent infected, but not yet infectious), Infected I , and Re-
covered R (no longer infectious, also referred to as removed)
states. The rate of change in these parameters is represented
by the ordinary differential equations (2)-(5) and parameter-
ized by β (effective contact rate/infectious rate learned from
mobility data), σ (the incubation rate), and γ (recovery rate).

dS

dt
= −βSI (2)

1A tensor T is a multilinear data structure and is denoted by bold
uppercase calligraphic font.

dE

dt
= βSI − σE (3)

dI

dt
= σE − γI (4)

dR

dt
= γI (5)

The basic reproduction number representing the number of
secondary infections from a primary individual in a com-
pletely susceptible population can be computed by,

R0 =
β

γ
(6)

In the proposed SIRNET model, we explore variations of
machine learning to learn β based on latent information of
the contact rate. In particular, the model attempts to learn
β(t) by mapping β(xt(t), xs), where xt represents relevant
temporal data (we consider only time steps of one day) and
xs represents relevant spatial data.

While our approach can be extended to many types of data,
our work here is focused on one type in particular: mobility
data. Contact rate is a key parameter of the model and its
modification through quarantine measures is an effective way
to control the spread of the virus. Contact rate is a function
of population density as well as how people move and inter-
act with each other. Traditional modeling can retrospectively
estimate the change in contact rate brought about by policy
changes (step-function changes), in our approach we build
upon this technique to allow the integration of richer, daily
information based on the actual activities of a population. To
this end, we begin with cell-phone based mobility informa-
tion.

The mobility input vector, x, consists of mobility ratios
(current mobility divided by nominal mobility) in 6 categories
provided through [Google Mobility Reports, 2020]. SIR-
NET’s task is to use this feature vector to learn the resulting
contact rate as a function of population mobility. Through the
use of the SEIR cell, we can map the output to case counts
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Figure 2: We frame the SEIR modeling as a recurrent neural net-
work (RNN) architecture, introducing the SEIR-cell which encodes
susceptible, exposed, infected, and recovered proportions in its hid-
den states. Code is open-sourced on GitHub.

and learn the underlying mobility to contact rate function in
an end-to-end fashion. The SEIR cell’s hidden states consist
of the four compartmental groups normalized by population.

For the mobility model, the general form for how the SEIR
cell predicts contact rate is

β(t) = q ⋅ f(x(t))p (7)

where f(⋅) can either be a non-linear activation function ap-
plied to a weighted linear summation of all mobility data, or
a weighted norm of the mobility data. The power scaling is
an optional learnable parameter which removes the need to
justify a linear or quadratic relationship.

One of the primary challenges in modeling is that the un-
derlying state is difficult to estimate. The only data that
is reliably available is the total case count, and the case
count only represents a fraction of actual cases (with an es-
timated 70%–95% being under-reported). It also lags the
true state of the system by several days. Mobility data will
drive exposure, exposure will drive the amount of the in-
fectious, and the infections will in turn drive the number of
cases. To account for all of these factors, we use the 5-
day incubation period [Lauer et al., 2020; Li et al., 2020;
Guan et al., 2020] and add an additional 5 days to account for
the delay between becoming infectious and receiving a pos-
itive test confirmation. This delay in testing is not constant
across time, nor is it consistent from location to location, but
the measurable impacts of mobility on contact rate are most
apparent when delay is taken into account.

We initialize the hidden state with the number of active
and recovered cases at the onset of the epidemic and available
mobility data, I0 such that S = P −(I0+E0+R),E = 2.2

5
∗I0,

I = I0, and R = R0.

3 Results and Analysis
Model analysis for different geographical regions: SIR-
NET was evaluated on different geographical regions. Fig-
ure 3 shows the fit, total predicted cases, and forecast of the
number of active cases at the country, state, and county levels.
We show extended forecasts of total cases and fits for several
other countries in Figure 4, states in the US in Figure 5, and

Figure 3: SIRNET predictions on previous and current CDC re-
ported case data for the United States, Texas, and Bexar County
showing how the model performs at decreasing levels of geographic
granularity.

Figure 4: SIRNET predictions at the country level on previous and
current CDC reported case data for Brazil, Russia, India, and the
US.

counties in Texas in Figure 6. In order to forecast different
mobility scenarios, we first train the model to learn the re-
lation between mobility data and COVID-19 case data. We
then fix the mobility data for all future days at different val-
ues to simulate 25% nominal mobility (75% reduction), 50%
nominal mobility, 75% nominal mobility, and nominal mobil-
ity (all restrictions removed). To quantify the quality of the
fit, we perform cross validation by holding out the final 25%
of case data from the training data as a validation set. The
trained model forecasts over the validation data, assuming a
mobility rate over the period. As the case data scales with
the population, numbers produced by a metric such as mean-
squared-error are difficult to interpret. We thus use mean-
absolute-percent error (MAPE) (8) to assess the quality of a
fit.

MAPE = 1

N

N

∑
t

∣Yt − Ŷt
Yt

∣ × 100% (8)

MAPE gives the average percent deviation from the target
value Yt that the predicted value Ŷt is. At the country level,
the average MAPE of SIRNET fits is 10.2%.

In general, our results suggest a continuation of quaran-
tine level mobility or at least below 50% nominal mobility in
most regions, with some at least below 75% nominal mobility
for the immediate future. Figure 7 highlights a sample of the
mobility trends used in all our simulations. It is important to
note that this data reflects a sample space of mobility for the
region and might be missing information on key populations
that do not use specific types of devices. Adding finer gran-
ular information and data from multiple data providers can



Figure 5: SIRNET predictions at the state level on previous and
current CDC reported case data for New York, California, Florida,
and Texas.

Figure 6: SIRNET predictions at the county level on previous and
current CDC reported case data for Bexar County, Dallas County,
Harris County, and Tarrant County.

alleviate this concern.
Error Tolerance: When using any ML or statistical

model, to forecast trends, it is important to consider the confi-
dence interval or margin of error for the predictions. SIRNET
is currently trained on the specific region it is forecasting,
with region-specific assumptions about under-reporting, start
date for forecasting, delay in reporting, the recovery rate, and
the transition rate from exposed to infected. In future work,
it will be necessary to account for the error range for each of
these variables based on globally reported data, and use this
to predict the potential fluctuation in forecast scenarios. An-
other important extension to SIRNET is to extend learning to
multiple regions, providing a more generalized forecast that
can capture distinctions between different regions.

Dashboard: To provide a much broader analysis, we de-
ployed the SIRNET model in a live interactive dashboard.
The dashboard currently provides the model’s predictions for
different counties of Texas and shows the trend in mobility in
counties over time.

Conclusions and Discussion
Our work adopts a multidisciplinary approach in modeling
the spread of COVID-19. SIRNET is a hybrid between epi-
demic modeling, physical science, and machine learning. The
benefit of epidemic modeling is in constraining our network
to produce meaningful variables from a physical standpoint;

Figure 7: The dashboard view of the change in mobility over time
with respect to the baseline mobility observed in the first week of
January, 2020 in Bexar County, Texas. The mobility remained rela-
tively high throughout the period thus leading to a spike in the cases.
The dashboard can be accessed here.

this adds an intuitive understanding of how the model is fore-
casting, and provides an approach for overcoming limited or
missing real-world data samples. On the other hand, ma-
chine learning provides a tool for translating variables, such
as mobility, non-pharmaceutical intervention, and population
demographics, into variables that impact an epidemic model.
It also allows us to discover relationships between real-world
trends and the impact on the spread of COVID-19, as well
as model scenarios, such as relaxing social distancing poli-
cies. We believe both components are necessary to develop
an insightful model to aid in understanding the impact of non-
pharmaceutical interventions on the spread of COVID-19.

Similar to other approaches, we base our study on sev-
eral biologically observed data and real-world datasets. We
demonstrate how new tools can be created to better exploit
available quantitative measures in the fight against COVID-
19. By integrating reliable metrics and well-studied infection
dynamics, we create an approach that is deeply data-driven
and epidemiologically grounded. Our studies confirm the ef-
fectiveness of reduced mobility for limiting the reach of the
pandemic, and our models provide a means of forecasting the
effects of different mobility scenarios.

Results shown only focus on translating mobility to con-
tact rate of COVID-19. Exhaustive mobility data combined
with non-pharmacological intervention datasets can improve
the network predictions, incorporating factors such as mask
policies. Since several datasets are proprietary and limited by
data user agreements, it will be important to establish good
data collection and standardization practices to address catas-
trophic events.

Given the substantial risk of reintroduction of the SARS-
CoV-2, it is critical to reinforce balanced social distancing
measures in the coming months to reduce the impact on the
healthcare system, general public, and economic prosperity.
Resource limitations in a rapidly growing pandemic demand
compelling resource utilization choices. Of importance is to
note that the data-driven AI models provide a window into
understanding the potential impact and should be treated as a
qualitative guidance due to the rapid changes and variability
associated with the data collection, testing strategies, report-
ing, and the virus transmission.

https://livid-about-covid19.nuai.utsa.edu/
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