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Abstract
The PICO framework (Population, Intervention, Comparison,
and Outcome) is usually used to formulate evidence in the
medical domain. The major task of PICO extraction is to
extract sentences from medical literature and classify them
into each class. However, in most circumstances, there will
be more than one evidences in an extracted sentence even
it has been categorized to a certain class. In order to ad-
dress this problem, we propose a step-wise disease Named
Entity Recognition (DNER) extraction and PICO identifica-
tion method. With our method, sentences in paper title and
abstract are first classified into different classes of PICO, and
medical entities are then identified and classified into P and
O. Different kinds of deep learning frameworks are used and
experimental results show that our method will achieve high
performance and fine-grained extraction results comparing
with conventional PICO extraction works.

Introduction
Evidence-based medicine (EBM) is a dominated approach
enabling clinical practitioners to utilize the best available
information (evidence) in making decision during clinical
practice. When seeking evidences in medical literature, the
PICO framework (Schardt et al. 2007) is usually used to for-
mulate evidence in the medical domain. PICO represents
four elements: Patient/Problem (P), Intervention (I), Com-
parison (C) and Outcome (O). Unfortunately, the PICO ele-
ments are usually not clearly identified in the text contents of
medical literature, which need clinical practitioners to read
and extract the PICO manually (Xia et al. 2019).

The major task of automatic PICO extraction is to ex-
tract sentences from medical literature and classify them into
each element (class). Most of the previous methods (Jin and
Szolovits 2018) identify PICO elements in abstracts and do
classification at the sentence level. Unfortunately in most
circumstances, there will be more than one PICO elements
in an extracted sentence even it has been categorized to one
class with the highest probability. So the fine-grained entity
level extraction for PICO elements other than sentence level
PICO elements is required.
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In this paper, we propose a fine-grained medical Named
Entity Recognition (NER) extraction and PICO identifica-
tion method. With our method, medical NERs are identified
and categorized into different classes of PICO. There are a
lot of works using natural language processing (NLP) algo-
rithms to extract medical NERs and classify them into dif-
ferent classes. Many deep neural network architectures have
been proposed and used, among which the Conditional ran-
dom field layer combined with the model of bidirectional
Long Short-Term Memory (BiLSTM-CRF) produces en-
couraging results on medical NER extraction (Huang, Xu,
and Yu 2015). Conditional Random Field (CRF) is a graph
model that is often used to solve sequence labeling prob-
lems which focus on sentence level positions. Compared to
the softmax classifier, the CRF can capture the context infor-
mation of the target label. Further, the Convolutional Neu-
ral Networks (CNNs) and LSTM networks are applied to
encode character-level word embedding. In addition, there
are many public knowledge bases in the medical field which
are used to enhance the deep learning frameworks. Previ-
ous works have compared the performance of these models.
However, there are still a lack of validation on classifying
the extracted medical NERs into PICO classes.

This paper tries to leverage the dominated deep learn-
ing technologies such as Bi-LSTM, CNN and BERT (De-
vlin et al. 2018; Alsentzer et al. 2019) and properly position
them into different steps to streamline the overall entity level
PICO identification task. Structured information in medical
knowledge graph such as UMLS are also used to enhance
the performance. The main contribution of this paper are as
follows:
• We propose a step-wise work flow to fulfill the disease
entity classification task, which carefully position different
deep learning models into different steps. It makes us to
improve the performance step-by-step and enhance the ex-
plainability of the whole system.
• We introduce mainstream deep learning models for the
sentence-level PICO classification task and the disease en-
tity recognition task. Structured information of medical do-
main knowledge via graph embedding is integrated into the
deep learning models. Language rules are also combined
with deep methods to provide adjusted entity-level classi-



fication results.
• A series of experiments for each step are implemented
to show step-wise results. A web application is developed
to enable the interaction between these results and the end
users. Results on a set of risk model papers are also dis-
cussed.

The method is evaluated on clinical predictive model-
ing papers (Steyerberg and others 2009), which is a major
category of medical literature. In these papers, risk mod-
els are proposed as an explicit, empirical approach to esti-
mate probabilities of disease(s) or outcome(s). As a power-
ful tool of disease prevention, risk models are widely used in
chronic disease management. Annually, about two-thirds of
total deaths around the world are caused by chronic diseases
(Oh, Stefani, and Kim 2014). Half of them are cardiovascu-
lar diseases. Risk models are essential for physicians to es-
timate individual patient’s risk or discover leading risk fac-
tors. However, there are several limitations among risk mod-
els, such as low sensitivity, inadequate factors in model(Elo-
sua 2014) or not robust across domains. To automatically
extract medical entities and classify them into PICO will be
the first step to evaluate and utilize these risk models. To be
specific, we address the disease NER extraction and classi-
fication in this paper.

Method
The popular end-to-end approach for PICO entity extrac-
tion is mainly in black-box which reduces the explainabil-
ity of the model. To address this issue, we divide the com-
plex system into different components. The main work flow
of our method is illustrated in Figure 1. Text content of
title and abstract of risk model papers are used as inputs,
where the papers are retrieved by our previous work (Yu et
al. 2019). In a nutshell, we provide a step-wise work flow
to extract and classify disease entities in risk model paper
title and abstract into PICO classes. Sentences in title and
abstract are firstly classified into PICO classes by the PICO
Classification Model. Following with the DNER Model, dis-
ease entities are then extracted from the sentences. Finally,
the Disease Entity Mapping Model adjust and re-classify
the disease entities into P and O. There are several advan-
tages for this framework. First, the entity classification task
is divided into different tasks, e.g., sentence-level and entity-
level, which makes it possible to leverage different kinds of
deep learning models and improve the performance step-by-
step. Second, since human interaction can not be avoided,
sophistically dividing the task into several steps with mean-
ingful inputs and outputs will improve the explainability of
the whole system. In our paper, a web application is also
shown to demonstrate how the results of each step are re-
ported to the end user, and how these results can be modified
via the user interface.

PICO Classification Model
The PICO classification model is generally a sentence clas-
sification model. Its input is the title and abstract of each
paper. The output is sentences along with the PICO classes
including P, I/C, O, and N. Label N means that this sentence

doesn’t belong to any class of PICO. Like many other works
(Wallace et al. 2016; Jin and Szolovits 2018), we incorpo-
rate the element C into the element I since the “comparison”
usually refers to a kind of “intervention” in most literature.
The sentence classification example is shown in Figure 2.

Traditional sentence classification models are often based
on machine learning techniques, which need complex fea-
ture engineering and have poor transferability(Pan and Yang
2009). The popular deep learning models have changed this
situation, and excellent models combined with large high-
quality data have generated amazing results (Kim 2014).
One of the major shortcomings of other paper works is
the lack of high quality annotated dataset about PICO sen-
tences. The dataset is either not public or coarse-grained la-
belled. In order to solve this problem, we invite experts to
label 500 papers which will be described in experiment part.
Two classification models are implemented: CNN (Convo-
lutional Neural Network) (Kim 2014; Yang et al. 2016)and
Bi-LSTM (Bidirectional Long Short-Term Memory)(Graves
and Schmidhuber 2005). The most classic model for text
classification by CNN is the work of kim(Kim 2014). Its in-
put layer is a word vector expression obtained by passing the
public corpus through the pre-trained word2vec(Mikolov et
al. 2013) model, and the output layer is the sentence clas-
sification label probability. The input word sequence can be
transformed into a vector by concatenating the correspond-
ing word vectors from the embedding matrix. The word em-
bedding we use is trained under large-scale medical domain
texts. It is more suitable for medical related tasks than tra-
ditional open world embedding(Chiu et al. 2016). The CNN
model has been proved to be effective in many natural lan-
guage processing tasks(Yin et al. 2017).

RNN (Recurrent Neural Network) is another popular
deep learning model and has achieved great success and
been widely applied in many NLP (Cho et al. 2014)
tasks. The purpose of RNNs is to process sequence data.
In the traditional neural network model, the layers are
fully connected between the input layer and the hidden
layer as well as the hidden layer and the output layer.
The nodes between each layer are disconnected. But this
common neural network is powerless for many problems.
For example, if you want to predict what the next word is
in a sentence, you usually need to use the previous word,
because the words in a sentence are not independent. The
LSTM (Hochreiter and Schmidhuber 1997) is a special
RNN model proposed to solve the problem of gradient
vanishing. But there is a problem with modeling sentences
using LSTM: it is impossible to encode information from
back to front. Bi-LSTM(Schuster and Paliwal 1997) solves
this problem and can better capture two-way semantic
dependencies. Follow this architecture, The dynamic of a
LSTM cell is controlled by an input vector (xt), a forget
gate (ft), an input gate (it), an output gate (ot), a cell state
(ct), and a hidden state (ht), which are computed as:

it = σ(Wi ∗ [ht−1, xt] + bi) (1)

ft = σ(Wf ∗ [ht−1, xt] + bf ) (2)

ot = σ(Wo ∗ [ht−1 + bo]) (3)



Figure 1: The system work flow. There are four main modules: PICO classification model, diseases named entity recognition
model, mapping model and visualization system.

gt = tanh (Wg ∗ [ht−1, xt] + bg) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh (ct) (6)

where ct1 and ht−1 are the cell state and hidden state respec-
tively from previous time step, σ is the sigmoid function
( 1
1+e−x ), tanh is the hyperbolic tangent function( ex−e−x

ex+e−x ).
The Bi-LSTM neural network model can automatically cap-
ture deep semantic features and classify sentences.

We compare the sentence level PICO classification per-
formance of different models. The input to the model is sen-
tences consisting of the title and abstract of a risk model
paper. Through the PICO model, the output is a tagged sen-
tence of four labels: P, I/C, O, N, as shown in Figure 2.

Diseases Named Entity Recognition Model
The main task of the Diseases Named Entity Recognition
(DNER) model is to identify and extract disease-related en-
tities in the text. Its input are the labeled sentences produced
by the PICO classification model, and the output are the dis-
ease entities in the sentences. As we observed, most of dis-
ease entities are contained in P and O sentences. To simplify
the problem, in this paper we only address the DNER task
with sentences labeled with P and O. The extraction task
can be converted to a sequence labeling problem(Huang, Xu,
and Yu 2015) by assigning the annotated entities with appro-
priate tag representations. In order to be more versatile, we
use the standard “BIO” schema, in which each word is as-
signed to a label as following: B = beginning of an entity, I
= inside an entity, and O = outside of an entity, and the train-
ing data are the NCBI-BIO dataset (Doğan, Leaman, and Lu
2014). The NCBI disease corpus is fully annotated at the
concept level to serve as a research resource for the biomed-
ical natural language processing community. The detailed
statistical information is shown in Table 1.

In order to get better performance, our paper proposes a
method to improve the model by encoding structured infor-
mation of medical knowledge bases. Specifically, plain text
contains a large amount of unstructured information, and
the traditional model has low utilization rate. In the medical
domain, there are many public structured medical knowl-
edge bases, such as Unified Medical Language System, also
known as UMLS(Bodenreider 2004), DrugBank(Wishart et
al. 2006), etc. The knowledge base can be represented into
a graph. The nodes in the graph are entities, and the edges
between nodes are the relationships among entities. For ex-
ample, the semantic relationship between different medical
entities is included in UMLS, which promotes the perfor-
mance of the model.

We use the graph representation learning model, Deep-
Walk(Perozzi, Al-Rfou, and Skiena 2014), to encode the
nodes in the medical knowledge base into low-dimensional
space vectors. The DeepWalk draws on the idea of the fa-
mous word embedding model word2vec in nature language
processing. The basic processing element of word embed-
ding is single word, and corresponding to the representation
of network is graph node. Word embedding analyzes the im-
plicit information of word sequence of a sentence, graph em-
bedding captures structured information corresponding to
node in the knowledge base. In a similar way, DeepWalk
encodes the list of nodes in a random walk of a knowledge
base. The so-called random walk can be understood in this
way: It repeatedly and randomly selects the node of walk-
ing path on the network, and finally forms various of fixed-
length node paths. Starting from a random node first, each
step of the walk is randomly selected from the edge con-
nected to the current node. Then moving along the selected
edge to the next vertex, and the process is repeated. Given
a graph G = (V,E), V is the node set and E is the edge
set. wi = vo, v1, . . . , vn is a sequence of several nodes,
where v ∈ V . v is a node and can not be calculated, so a



Figure 2: The PICO sentences classification model. Its input is the sentences of paper and outputs are sentences with labels.

Table 1: NCBI dataset statistics.
number of
sentences

avg sentence
length

number of
tokens

number of
unique tokens

number of
annotations

Train-NCBI 5,576 23 132,584 9,805 2,911
Valid-NCBI 918 25 23,456 3,580 487
Test-NCBI 941 25 24,019 3,679 535

mapping function Φ is introduced. The mapping function Φ
maps each node in the network into a d-dimensional vec-
tor. Φ is actually a matrix with a total of |V | × d hyper-
parameters which need to be updated and optimized. So the
original optimization goal changed from formula 7 to for-
mula 8. This objective function can be trained and optimized
with the skip-gram model.

Pr(vn|v0, v1, . . . , vn−1) (7)

Pr(vn|Φ(v0),Φ(v1), . . . ,Φ(vn−1)) (8)

UMLS has nearly 3.6 million nodes and 80 million edges.
In order to save training time, we filter out other languages
and only keep the English version. The parameters of the
training are updated appropriately on the basis of the orig-
inal DeepWalk paper. The length of randomly walk list is
32, the number of nodes sequence is 10 and the word2vec
window size is 5. The training takes 2 days on a computer
with 128G RAM and 32 core CPU. We use the downstream
task, NER, to evaluate the quality of the entity embedding,
which in turn tunes the training of the DeepWalk. After that
we get the medical knowledge base entity embedding and
we use the knowledge graph information the same as the
way of word embedding. For comparison, we implement dif-
ferent models, such as Bi-LSTM, Bi-LSTM + CRF(Huang,
Xu, and Yu 2015) and conduct full experiments to prove the
effectiveness of the methods. For the credibility of the ex-
perimental results, the hyper-parameters are consistent with
relevant papers.

Mapping Model
The mapping model evaluates and adjusts the negative re-
sults from the previous steps. Intuitively the following is-
sues are highlighted: First, DNER based on P-labeled or O-
labeled sentences would get empty result. The solution of
this issue is to look for the results in the I/C-labeled and N-
labeled sentences. Second, there is an intersection between
the recognition results of P and O which we should keep
only one if an entity appear in both of P and O at the same
time. The solution is to leverage the “soft” label of the PICO
sentences classification model which are the probabilities of
corresponding classes on each sentence. As we mentioned
previously, a sentence might contain more than two PICO
elements. For example, the first half of sentence belongs to
P label while the latter part is belonging to O label. The
PICO classification model cannot solve this problem. In or-
der to solve this issue, we incorporate the method of lin-
guistic rules. The final score calculation formula for disease
entity is as follows:

Score = λf(di) + (1− λ)g(di) (9)

where di represents a disease entity which has two scores
di = (s1, s2), i is the index of disease entity. s1 represents
the probability that the entity belongs to P label, and s2 rep-
resents the probability that the entity belongs to O label. λ is
an adjustable specific coefficient.

This probability is generated from the aforementioned
PICO classification model. g(di) stands for the regular ex-



pression rule model. We manually formulate some typical
linguistic rules, which are deterministic for the segmentation
of sentence, e.g., if they belong to P or O. If the disease entity
di is covered by the rule, then the value of g(di) is set to 1,
otherwise 0. The results of g(s) are (1,0), (0,1) and (0,0), re-
spectively. Re-dividing the entity associated label set based
on the score can improve the overall performance and reduce
the effects caused by the error accumulation of the previous
models. In order to verify the method, we invite several med-
ical experts to help us label 100 articles. We compare the
results of adding rules with no rules and calculate the recall
rate.

Results
In order to fully demonstrate the effectiveness of our
method, we conducted complete experimental evaluation for
each module, and obtained convincing experimental results.
Precision, Recall and F1 score are used as indicators which
are the most commonly used measurements in the field of
machine learning and deep learning.

In the area of information retrieval, true positive (TP) indi-
cates the number of labeled instances the method find. False
positive (FP) indicates the number of unlabeled instances
that the method find. And false negative (FN) indicates the
number of labeled instances that the method doesn’t find.
Then precision, recall and F1 score are calculated as follow-
ing:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(12)

Results of PICO Classification Model
The 500 papers for the PICO classification model are down-
loaded from PubMed sorted by time. Two experts are in-
vited to label the same batch of papers at the same time in-
dependently. If there is a disagreement, it will be confirmed
by the third expert. We finally get our dataset and divide
it into train set and validation set with a 7:3 ratio. In order
to ensure the adequacy of the experiment, two classification
models are implemented: CNN (Kim 2014) and Bi-LSTM
(Graves and Schmidhuber 2005). However, the scores of the
Bi-LSTM model are much higher than the CNN model’s,
so here we only show the result of the Bi-LSTM model as
in Table 2. We compare our classification results with Jin
et al.(Jin and Szolovits 2018), which extracted 489k med-
ical abstracts from MEDLINE(https://www.medline.com/).
Yuan et al. (Xia et al. 2019) proposed a soft-margin SVM
classification model which merges other features that com-
bines 1-2 gram analysis with TF-IDF(Pan and Yang 2009)
method. We also compare with them.

Results of DNER Model
The performance of the DNER model has a major impact
on the final results. We compare the performance of dif-
ferent models and the same model under different hyper-

parameters. Most of the hyper-parameters follow Reimers
(Reimers and Gurevych 2017): dropout=0.25, lstm hid-
den layer size = 100, optimizer=adam, char cnn embed-
ding size=30, char LSTM embedding size=25, and mini
batch size=32. In addition, in order to improve perfor-
mance, we introduce structured information in the medi-
cal knowledge base via graph representation model train-
ing and prove its effectiveness from experimental results
as shown in Table 3. We also use the BERT model which
is the dominated model in various fields for medical entity
recognition tasks. The experimental code refers to BERT-
pytorch (https://github.com/codertimo/BERT-pytorch). Two
different versions of BERT are implemented: BERT-base
and BERT-large. With fewer parameters, BERT-base has
faster training speed. but BERT-large achieves the best per-
formance over all the other models with precision 0.8507,
recall 0.8844 and F1 score 0.8672.

Results of Mapping Model
The mapping model is used to perform further processing of
the DNER model and obtain the disease entity classification
results, so that the clinical practitioners can quickly get the
key evidence with less time. Several clinical researchers read
series of medical papers of risk models and summarize a set
of linguistic rules such as “... risk of < outcome >”. If a
sentence matches this rule, the entity that appears in the later
part is extracted and classified as “O”. 100 papers are labeled
by the clinical researchers following the same protocol with
the PICO classification labeling work. The results are shown
in Table 4.

Web Application
A web application is developed to enable the method and
provide interface (see Figure 3) for user to interact with the
results. When the user uploads a paper, the back-end system
will call the service API on the server to parse the text in title
and abstract, and display the PICO classification result and
the corresponding disease entity recognition result. At the
same time, to further improve the accuracy of the system,
we also provide labeling and modification buttons. If there
is an error in the recognition result, the user can manually
modify the result and store it in the back-end database. If the
system collects very few samples, it will use the language
rules and remember it to avoid mistakes next time. When
samples are accumulated to a certain extent, the back-end
system will retrain the model to improve the performance of
the model. As in Figure 3, the title and abstract of the risk
model paper are displayed on the left side of the web page,
the panel in the middle shows the results of the sentence-
level PICO classification. The right panel shows the final
disease entity mapping results in P and O respectively.

Discussion
The methods mentioned earlier provide a step-wise frame-
work for automatically extracting disease entities from risk
model papers based on the PICO framework. The following
sections analyze and discuss some details of the experimen-
tal results for each module.



Table 2: Comparison of PICO classification models.
P I/C O

Precision Recall F1 Precision Recall F1 Precision Recall F1
Jin2018(Jin and Szolovits 2018) 0.885 0.828 0.856 0.749 0.815 0.781 0.845 0.832 0.838

Yuan2019 (Xia et al. 2019) 0.925 0.838 0.879 0.842 0.789 0.814 0.886 0.897 0.891
Our Model (Bi-LSTM) 0.947 0.867 0.906 0.773 0.850 0.810 0.867 0.918 0.891

Table 3: Result of different DNER models.
model Precision Recall F1

LSTM+SOFTMAX 0.7910 0.8125 0.8016
LSTM+CRF 0.8179 0.8375 0.8275

LSTM+CRF+CNN CHAR 0.8298 0.8333 0.8316
LSTM+CRF+LSTM CHAR 0.8283 0.8697 0.8485

LSTM+CRF+CNN CHAR+GRAPH EMBEDDING 0.8433 0.8583 0.8508
LSTM+CRF+LSTM CHAR+GRAPH EMBEDDING 0.8348 0.8635 0.8489

BERT BASE 0.8200 0.8729 0.8456
BERT LARGE 0.8507 0.8844 0.8672

Zhai, Zenan 2018 0.8213 0.8366 0.8289
TaggerOne (Leaman and Lu, 2016) 0.852 0.802 0.826

Dnorm (Leaman et al., 2013) 0.820 0.795 0.807

Figure 3: The visualization System.

In table 2, we compare the PICO classification results of
different models based on Bi-LSTM architecture. Our model
achieves the best performance on the P label sentences clas-
sification comparing with the state-of-the-art models as well

as some indicators of I/C and O labels, which proves the
effectiveness of our model. In addition to the performance
comparison, we also analyze the negative samples. Statis-
tics show that in some cases, due to the frequent occurrence



Table 4: Result of Mapping Model with different method.

Model Recall
P O

Bi-LSTM+CRF+CNN CHAR+GRAPH EMBEDDING 0.7262 0.60
BERT LARGE 0.7588 0.6293

BERT LARGE+ LINGUISTIC RULE 0.7911 0.7474

of some typical words, the sentence of P label is difficult to
distinguish from I/C, the same as O and I/C. In addition, in
some sentences, the part of one sentence belongs to P label,
however, the other part belongs to O label. This increases
the difficulty of classification. We compare with the results
of two recent related papers, and we can clearly see that our
results in most indicators are better.

In the DNER module, we experiment with leading deep
models on NER task (Table 3). For models with Bi-LSTM,
our model Bi-LSTM + CRF + CNN char + graph embedding
improves the baseline of F1 score from 80.16% to 85.08%
and precision score from 79.10% to 84.33%. Compared to
current state-of-the-art models, we achieve significant im-
provements.

The BERT model outperforms all other models on all
the measurements (the precision score is 85.07%, the recall
score is 88.44%, the F1 score is 86.72%). What we can not
ignore is that the model is too complex and the calculate
process is very slow, so each time the parameter adjustment
takes a lot of time.

For the mapping model, since some sentences may have
key elements of P and O at the same time, classification is
difficult and has a great impact on the results of DNER.
The mapping model uses a set of statistical rules and lan-
guage rules to alleviate this problem and improve the over-
all performance. In table 4, we only give results about recall
because we care more about how many entities are found
which we need. The precision actually is low due to follow-
ing issues: (1) there are still errors from the PICO classi-
fication model and the DNER model which have not been
well addressed, and (2) there’s lack of public standard la-
beling strategies. Note that the manual work of labeling dis-
ease entities with PICO elements is a non-trivial work for
most of the clinical researchers even we restrict the papers
with risk model type. During the experiment, we observe
that a good deal of labels done by the first two researchers
are mismatched. That also increase the work of the third re-
searchers to further do a decision. By considering this situ-
ation and less number of labeled samples, we finally decide
to use rule-based method in the mapping model. Specifically
for risk model disease entity extraction and classification,
this is the first try to do such experiments and can serve as a
benchmark for future research.

One advantage of step-wise approach is that the results of
each step can be output and presented to the user. In Figure
3, we show an example with the medical paper (Fleg et al.
2016) which is randomly retrieved from PubMed. The mid-
dle of the web page is the classification result of PICO el-
ements and the DNER recognition results are shown on the
right panel. It can be found that the classification result of

PICO sentences is reasonable, but the results of DNER have
some errors. For example, the item “hospitalization” should
not belong to the disease entity caused by the misclassifi-
cation of the DNER model. At this point, the user can con-
tinuously improve the performance of the model by deleting
this unreasonable word and saving the result to the back-end
system.

Conclusion
In this paper, we propose a step-wise method for extracting
medical entities based on the PICO framework. Main steps
include PICO sentence classification, disease entity recogni-
tion and disease mapping. Mainstream deep neural networks
such as CNN and Bi-LSTM are used to classify sentences
into PICO elements. The disease entity recognition is based
on dominated deep learning frameworks. Structural medi-
cal knowledge is embedded with probabilistic knowledge
mapping model. Experimental results show that our method
achieves reasonable performance on precision, recall and F1
score. An online web system is also developed to facilitate
clinical researchers to do medical entity based PICO extrac-
tion.
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