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Abstract
The deep learning based approaches have achieved
remarkable success in diabetic retinopathy detec-
tion. Due to the accountability in medical diag-
nosis, the interpretability of computer-aided diag-
nosis approaches has been investigated recently.
However, few of existing approaches make full
use of the explainable evidences to improve the
diagnosis accuracy. In this paper, we propose
an Explainable Lesion Learning and Generation
(ELLG) framework to study the interpretability of
diabetic retinopathy detection and achieve more ac-
curate diagnosis. We first generate visual explana-
tions for diabetic retinopathy diagnosis using pro-
posed Gated Multi-layer Saliency Map (GMSM).
Then we iteratively generate fundus images with
lesions and include them for training to learn more
robust lesion features. Our method not only pro-
vides more accurate explainable evidences but also
addresses the data imbalance problem in diabetic
retinopathy detection, therefore results in highly
improved detection performance without increas-
ing time-complexity during the inference. The ex-
perimental results on two databases demonstrate
the efficiency of the proposed approach.

1 Introduction
Automatic digital imaging diagnosis of diabetic retinopathy
(DR) has been investigated for many years. Recently, the
successful use of deep learning in image classification and de-
tection tasks has inspired researchers to apply Convolutional
Neural Networks (CNNs) based approaches on DR detec-
tion [Voets et al., 2018; Wan et al., 2018a; Jiang et al., 2019;
Costa et al., 2018; Zhu et al., 2019]. Pratt et.al. [Pratt et
al., 2016] proposed the five class classification of DR by us-
ing specific designed CNN for the first time. In [Wan et al.,
2018b], the authors successfully applied transfer learning ap-
proach by using several CNN structures including VggNet
and ResNet for DR detection. A data-driven approach for
DR detection was proposed in [Pires et al., 2019], the authors
gradually used data augmentation, multi-resolution training
through CNN to improve the detection accuracy. Although

these approaches proved their superiority in DR detection,
compared with traditional machine learning algorithms, how
to explain their decision mechanism is still an open problem.

The interpretability of the detection results is critical be-
cause they are highly related to the safety of patients, and it
is essential to convince both patients and physicians that the
diagnosis is reasonable and trustworthy through illustrating
their explanations. Some lesion-level DR classification works
have been introduced and illustrated visual explanations of
the classification results. In [Yang et al., 2017], a two-stage
CNN approach proposed to illustrate lesions in fundus im-
ages through an attention mechanism. Similarly, [Wang et
al., 2017] also proposed an attention visual understanding of
the diabetic retinopathy based on their zoom-in-net. Activa-
tion map based methods were also used to illustrate the vi-
sual explanations. Ref. [Jiang et al., 2019] combined class
activation maps (CAMs) [Zhou et al., 2016] with adaboost
to get less biased saliency maps to indicate the lesion po-
sitions. Ref. [Wang and Yang, 2018] also provided visual-
interpretable feature by adding regression activation map to
help localize the discriminative regions of the lesion and show
its severity level. More recently, a GAN based method was
proposed by [Niu et al., 2019] to synthesize pathological
retinal images. The pathological descriptors were extracted
by using a DR detection network [Antony and Brüggemann,
2016] trained on a public database [Kaggle, 2016]. Although
many works have provided visual explanations for DR detec-
tion results through different methods, few of them attempted
to make full use of these interpretable detection results to fur-
ther improve DR detection performance.

Another limitation of applying CNN based approaches on
medical imaging diagnosis is the class imbalance problem.
The amount of the digital images with lesions is usually not
large enough to train robust CNN for accurate DR detection.
To address this limitation, previous works [Cao et al., 2018;
Qummar et al., 2019] usually applied image preprocessing
approach including under and over sampling to balance the
data. Such general approaches can alleviate the impact of
data imbalance to some extent, while targeted method can be
proposed to tackle this problem in DR detection.

In this paper, we propose a framework dubbed ELLG (ex-
plainable lesion learning and generation) to address the lim-
itations in DR detection. We summarize our main contri-
butions as follows: 1) Inspired by CAM, We first propose



Figure 1: Illustration of the proposed ELLG framework.

a novel GMSM (gated multi-layer saliency map) method to
locate the lesions of diabetic retinopathy. Our method illus-
trating more accurate lesion regions, can generate more reli-
able visualization of diagnosis. 2) We develop an approach to
iteratively generate pathological images and gradually learn
more robust lesion features. Our approach takes full advan-
tage of the visual explanations to learn various new generated
pathological images and address the common data imbalance
problem as well. 3) The proposed method can achieve better
detection accuracy and more accurate lesion localization than
baseline methods on two public databases, without increasing
time complexity during the inference.

2 Methodology
2.1 Overview of ELLG
The framework mainly consists of three parts as shown in
Figure 1. Firstly, the Lesion Learning part applies the DR
detection net [Antony and Brüggemann, 2016; Niu et al.,
2019] to learn the lesions and predict the severity of diabetic
retinopathy in the meantime. Then the Lesion Visualization
part takes correctly classified images from the DR detection
net as the inputs and generates heatmaps for visual expla-
nation by using the proposed GMSM. Based on the visual-
ization results, the Lesion Generation part extracts and adap-
tively transfers lesions from heatmaps, and then blends them
into randomly selected normal images to generate new patho-
logical samples. Finally, the generated samples are iteratively
feed into the whole network for more robust lesion learning.
In general, the proposed framework iteratively generates new
pathological samples and learns the lesion features based on
the combination of original and blended images to enhance
the model’s understanding of lesions.

The DR detection net is widely used in many publica-
tions [Niu et al., 2019; Wang and Yang, 2018] as the base-
line method. It is a regression model that mainly consists
of three convolutional blocks with output sizes of 27 × 27,
13 × 13, 6 × 6, and the subsequent classifier. Each conv

block contains several convolution and max pooling layers.
It takes 512 × 512 fundus images as the inputs and outputs
one-dimensional diabetic retinopathy results that represent
the corresponding severity level.

2.2 Gated Multi-layer Saliency Map
Inspired by CAM, we attempted to generate visual explana-
tions based on the activation maps. Class activation mapping
algorithms, including CAM, Grad-CAM and Grad-CAM++,
are designed for classification models, in which only the re-
sult of a specific class is used. As for regression models like
the DR detection net we used, instead of using a global av-
erage pooling layer proposed in CAM which may impact the
detection accuracy, we preserved the original structure of the
DR detection net and treated the output cell as the result of a
specific class in a classification model without softmax layer.
Therefore, the saliency map L can be calculated by:

Lij = relu

(∑
k

wk ·Aij

)
(1)

where wk represents the weights calculated by the gradients
(more details in [Chattopadhay et al., 2018]), and A repre-
sents the activation map. Considering that different fundus
images have different structures, some normal regions may
also have a slight fluctuation and then become non-zero in
the saliency map. Especially, some tissues like optic papilla
in the normal images will cause the fluctuation and be largely
magnified after the normalization by using the original CAM,
as shown in Figure 2b. To reduce the influence of these slight
fluctuations and get more accurate saliency maps, we pro-
posed a gate relu mechanism designed as follows:

Lij = max

(∑
k

wk ·Aij , t

)
(2)

In addition, as shown in Figure 3 a b, because the lower lay-
ers with high resolution contained more location and detail



(a) Original Image (b) CAM (c) GMSM

(d) Original image (e) CAM (f) GMSM

Figure 2: Comparison between heatmaps generated from CAM and
our GMSM. The first row uses a level 0 severe (normal) image, and
the second row uses a level 2 severe image.

(a) (b) (c)

Figure 3: Heatmaps generated from (a) lower layer, (b) higher
layer,(c) multi-fused layer.

information, the saliency maps of lower layers had higher ac-
curacy in lesion location but lower confidence. It resulted in
that the results from lower layer were overconfident in some
positions and might miss some mild lesion regions, while the
results from higher layer were more reliable but imprecise
in localization. Therefore, we fused saliency maps from two
different layers to acquire a more robust saliency map called
gated multi-layer saliency map (GMSM):

Lij =
1

2
· (norm

(
Llij

)
+ norm

(
Lhij

)
) (3)

Ll and Lh represent saliency map generated from lower-layer
and higher-layer conv blocks calculated by Eq. (2) respec-
tively, and both of them are normalized to the same range be-
fore averaging. As shown in Figure 3 c, by using the proposed
GMSM, more accurate lesions can be located and illustrated.

2.3 Lesion Generation and Iterative Learning
Like other medical imaging diagnosis tasks, the DR detection
also has the imbalanced data problem. Its database is highly
imbalanced with 73.48% of level 0 severe, i.e. normal fun-
dus images. In addition, from the pathological point of view,
the location and pattern of lesions can be various and stochas-
tic. Therefore, we proposed to generate random lesions and
feed the network more unseen samples. This process not only
addressed the imbalance problem but also made the network

learn more robust lesion features of diabetic retinopathy.

Lesion Patch Extraction
To acquire lesion patches without manual annotation, we
designed binary masks M to locate the regions with large
saliency values. We first normalized the saliency map L to
[0, 1] and get Lnorm, then we set thresholds τ which were
randomly selected within a certain range. The binary masks
M were set to 1 for those spatial positions with value larger
than τ in Lnorm:

Mij =

{
1, Lnormij > τ

0, otherwise
(4)

We then applied these masks over the original image and
get corresponding lesion patches.

Adaptive Lesion Transfer
The proposed adaptive lesion transfer approach mainly in-
cludes two parts: random shifting and adaptive color transfer.
To make the model learn the real features of lesions rather
than focusing on absolute lesion positions which may bring
overfitting problem, before blending them into another im-
age, we keep randomly shifting a single lesion patch in the
loops(100 in our setting) until there is no overlap with other
patches or the loop is over.

Noticing that different fundus images have different tones,
simply blending randomly shifted lesions patches into an-
other fundus image may cause color difference problem. For
example, even a normal patch of a dark-tone fundus image
(like Figure 2 a) may be recognized as retinal hemorrhage
if it is mixed up with a light-tone fundus image (like Fig-
ure 2 d), which can seriously impact the training process. To
address this problem, we applied the color transfer algorithm
in [Reinhard et al., 2001], which converts the tone of the
source image to the tone of the target image. The main idea
of the transformation is to make the source image to have the
same mean and variance as the target image in the lαβ space.

To enhance the linear representation in-between training
examples, following [Zhang et al., 2017], mixup with a ran-
dom ratio was applied:

Ibij =

{
r · Isij + (1− r) · Ioij , Isij 6= 0

Ioij , otherwise
(5)

where Is and Io denotes the adaptively transferred lesion im-
age and another randomly selected fundus image (from the
correctly classified set), and r is the blending ratio. Corre-
spondingly, the label of the blended image was also averaged
with the same ratio:

lb = classify(r · ls + (1− r) · lo) (6)

where classify() is the function that maps the predicted
severity values within a certain range to their corresponding
levels. After that, the generated fundus images were fed into
the DR-detection net for iteratively training and more robust
lesion features were expected to be learned.



3 Experiments
3.1 Experimental Settings
The conventional DR detection database [Kaggle, 2016]
(Database1) containing 35k training fundus images has been
used for the evaluation. Additionally, we have used a re-
cent released database [Kaggle, 2019] (Database2) which
has 3.6k training fundus images, as a supplementary to fur-
ther validate the effectiveness of the proposed ELLG ap-
proach. Following previous work, 10% data from the train-
ing set has been split as the validation set. The kappa
score and accuracy have been calculated for the evaluation.
As in DR-Detection-Net, the fundus images have been re-
sized to 512, 256 and 128 respectively for the three-part
training. The method in [Antony and Brüggemann, 2016;
Niu et al., 2019] has been used as the baseline. To present
the effectiveness of the proposed method more intuitively, we
did not apply any special ensemble or fusion method.

For the database1, the network was trained on original data
for 250 epochs and then finetuned on original and combined
data alternately for 4 rounds with 30 epochs per round. Batch
size is 48. In each round, the learning rate starts at 3e-5,
then decays to 3e-6 and 3e-7 after each 10 epochs. For the
database2, the learning rate is 8e-5, and the batch size is 64.
The models are trained for 30 epochs. The hyper parameter t
in Eq. (2) is set to 1.00, and τ in Eq. (4) is limited in [0.5,0.8].

3.2 Experimental Results
For Database1, as shown in Table 1, our proposed ELLG
has achieved better performance than previous SOTA non-
ensemble methods on validation, private and public datasets.

Method Dataset Kappa Accuracy
[Ghosh et al., 2017] val 0.7400 -
[Krishnan et al., 2018] val 0.7600 0.7610
[Kwasigroch et al., 2018] val 0.7760 0.5080
Baseline[Niu et al., 2019] val 0.8030 0.7983
ELLG val 0.8123 0.8129
Baseline[Niu et al., 2019] private 0.8054 -
ELLG private 0.8126 -
Baseline[Niu et al., 2019] public 0.8093 -
ELLG public 0.8172 -

Table 1: Comparative results on Database1

The Database2 has also been used for the evaluation. We
fine-tuned the baseline model from Database1 by using both
baseline and the proposed method. It can be seen from Ta-
ble 2, the proposed approach has better learning and adaptive
ability on the data from different domain.

Model Kappa Accuracy
Baseline[Niu et al., 2019] 0.8963 0.7830
ELLG 0.9203 0.8269

Table 2: Comparative results on Database2

In addition, we illustrated comparative visualization results
generated by using baseline and the proposed ELLG respec-

(a) (b) (c)

Figure 4: First and second row are original images, and their lesion
details. The third and fourth row present GMSMs generated from
the baseline model and ELLG model respectively.

tively which are shown in Figure 4. Specially, in Figure 4 a,
the lesions (rectangle) can be recognized by ELLG only. It
can be attributed to our iterative lesion generation and learn-
ing mechanism. Besides, in Figure 4 b and c, the peak regions
of GMSMs generated from baseline model have a slight de-
viation from the lesion and are less concentrated compared
to those generated from the ELLG model, which means our
ELLG model is more sensitive to the lesions detection.

4 Conclusion
In this paper, we have proposed the explainable lesion learn-
ing and generation (ELLG) framework to study the inter-
pretability of DR detection, address the data imbalance prob-
lem, and achieve more accurate DR diagnosis. To illus-
trate more reliable visual explanations for DR diagnosis, we
have generated heatmaps by using the proposed Gated Multi-
layer Saliency Map (GMSM). Based on the GMSMs, le-
sion patches have been extracted and then adaptively trans-
ferred and blended with other fundus images. Then the gen-
erated and original images have been used together to train
the model and to learn more robust lesion feature. The com-
parative experimental results on two databases have validated
the effectiveness of the proposed method for DR detection.
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