
 

 

Abstract 
Modeling disease progression is the key to the un-
derstatings of diseases and the development of effi-
cient clinical treatments. By virtue of recent ad-
vancement of machine learning technologies, a lot 
of models have been studied to predict and explain 
the status of disease and find important factors. One 
of the important aspects of those modelings is de-
signing covariates. While many studies use non-
temporal covariates, an important scope lies in ex-
amining temporal structures of covariates such as 
tendency, long-term influence, and others. This pa-
per discusses cardiovascular disease (CVD) predic-
tion and explanation of chronic kidney disease 
(CKD) patients using such temporal structures of 
covariates of laboratory tests and drug usages based 
on time windows. 

1 Introduction 
Growing computing power and digital accumulation of elec-
trical medical record (EMR) enabled to find complicated sta-
tistical relations among medical data. Various applications 
have been found in medicine, pathology, diagnostic and oth-
ers [Niel, 2019; Hamet, 2017; Johnson, 2018; Yu, 2018; Liu, 
2018; Xiao, 2019]. Leveraging such a computational envi-
ronment, modeling chronic diseases using machine leaning 
technology has been widely studied using large-scale cohorts. 
Chronic kidney disease (CKD) is one of the chronic diseases 
and its complications in later CKD stages largely affect the 
lifestyle. Among such complications, cardiovascular disease 
(CVD) is regarded as serious one so creating predictive or 
explanatory models which identify important risk factors 
with high classification performance is definitely beneficial 
for patients and physicians. This paper is thus specifically 
motivated in creating such models leveraging temporal infor-
mation of lab tests and drug usages. A patient suffering from 
a chronic disease such as CKD repeatedly takes medical 
checks and intakes drugs for a long term so the EMR holds 
such important temporal information to be analyzed with ma-
chine learning models. To this end, we tried an intriguing ap-
proach where such temporal information is summarized by 
computing statistics for several pre-defined time windows, as 
forming explanatory variables for machine learning models. 
Using Random Forest and other interpretable models, we 

successfully found the risk factors for CVD onset taking time 
structure into account, with obtaining high AUC scores. 

2 Background and Motivation 
Growing computing power and digital accumulation of elec-
trical medical record (EMR) enabled to find complicated sta-
tistical relations among medical data. Various applications 
have been found in medicine, pathology, diagnostic and oth-
ers [Niel, 2019; Hamet, 2017; Johnson, 2018; Yu, 2018; Liu, 
2018; Xiao, 2019]. The major purposes of those applications 
include the construction of predictive and explanatory mod-
els of the target outcome such as an onset of a certain disease 
or medical condition changes using the explanatory variables 
as well as to detect the importance of such variables as to how 
they affect the outcome. Leveraging such a computational en-
vironment, modeling chronic diseases has been widely stud-
ied using large-scale cohorts. Chronic kidney disease (CKD) 
is one of the chronic diseases and its complications in later 
CKD stages resulting in dialysis largely affect the lifestyle. 
Risk analyses of the kidney function have been then con-
ducted to identify several conditions including proteinuria, 
hypertension, and comorbidity of diabetes, which are related 
to estimated glomerular filtration rate (eGFR) declines [Yang, 
2014; Inaguma, 2017; De Nicolca, 2015; Toto, 2010]. Sev-
eral clinical trials also identified renin angiotensin system 
blockers and other related drugs are related to control eGFR 
decline [Brenner, 2001; Lewis, 2001; Wanner, 2018; 
Perkovic, 2019]. Motivated by such studies, this paper dis-
cuses models to predict and explain cardiovascular disease 
(CVD) onset of CKD patients, which is one of the serious 
complications of CKD. Our interests lie in how temporal sta-
tus of human body measured by lab tests, and temporal usage 
of CKD-related drugs are related to CVD onsets. To this end, 
we tried an intriguing approach where such temporal infor-
mation is summarized by computing statistics for several pre-
defined time windows, as forming explanatory variables for 
machine learning models. For high interpretability, we don’t 
adapted recent method processing temporal date using RNN 
and generative point process models, which are worth study-
ing further [Du, 2016; Xiao, 2017]. Using interpretable ma-
chine learning models, we identify the importance of such 
temporal information taking time structures into account, as 
well as obtaining high classification performance. 
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3 Experiments Design 
This section describes our design of experiments regarding 
necessary dataset construction and problems to be solved as 
well as other analytics details. 

3.1 Cohort Creation 
We used a real-world EHR dataset of one of the largest Jap-
anese  hospitals [Inaguma, 2020]. For our experiments, we 
first constructed a cohort of chronic kidney disease (CKD) 
patients as shown in Figure 1. Note that estimated glomerular 
filtration rate (eGFR), a key factor of determining the CKD 
stages, is largely affected by kidney transplant so we ex-
cluded such transplanted cases. Using a usual CKD determi-
nation criteria, we lastly constructed a CKD cohort with 
29,466 subjects. 

3.2 Problem Definition 
Using the CKD cohort, we then defined the outcome, forming 
the dependent variable of our analytical models. Our interests 
lie in modeling cardiovascular disease (CVD) so we counted 
the number of CVD appearance after CKD onset. We defined 
CVD onset if a patient is diagnosed as hear failure diseases 
listed in DPC system [JMHLW, 2018]. Among 29,466 CKD 
patients, 1,814 are diagnosed as CVD after CVD onset. We 
thought CVD appearance mechanisms are quite different if 
the time to CVD is largely different so we take CVD onset 
within 5 years as our target, which amounts to 1,277, con-
structing our CVD-labeled samples. For extracting non-CVD 
subjects, we considered two groups. One group consists of 
the patients who are diagnosed as CVD more than 5 years 
after CKD onset, while the other group consists of the pa-
tients who are not diagnosed as CVD and medical records 
exist at least 5 years after CKD onset. Note that, in the second 
group, we excluded the CKD patients who are censored with 
not being diagnosed as CVD within 5 years. The former 
amounts to 537, while the latter comes to 7,438, constructing 
our non-CVD-labeled samples, 7,975 in total. 

Our problem is then to create models to predict whether a 
patient is diagnosed as CVD within 5 years from CKD onset. 

In this paper, we study two models. One is a predictive 
model which classifies CVD-samples from non-CVD sam-
ples mostly using lab test time-series features observed 

before CKD onset. The other is an explanatory model which 
uses the label and features which are the same as above with 
drug time-series features before CVD added additionally. 
Note that the former model is to predict the future CVD ap-
pearance using past lab test results while the latter model is 
focusing on how recent drug usages explain the CVD onset. 
Note that the predictive model is to be use of advanced clini-
cal treatment while the explanatory models is to solicit phar-
macological interests to directly see relations between drug 
usages and CVD onsets. 

3.3 Feature Engineering and Construction 
To construct the features, we make use of the following types 
of raw data in EMR: 
• Demographic information 
• Lab test results 
• Drug usages 

First, the demographic information includes sex, age, and 
diabetes mellitus episode, which forms the static features 
used for both models. 

For lab test results, we chose relevant ones which are con-
sidered to be related to CKD or CVD as follows: 
• Kidney function 

Ø Estimated glomerular filtration rate (eGFR) 
Ø Serum creatinine 
Ø Serum albumin 
Ø Blood urea nitrogen (BUN) 
Ø Urine protein 

• Anemia indicator 
Ø Hemoglobin 
Ø Ferritin 
Ø Iron saturation 

• Lipid, liver function, vital and others 

Figure 1: Flow of extracting CKD patients from EMR  

Large category Small category # products 

Anemia drug Iron compound preparation 24 
ESA formulation 80 

Hypertension or 
heart failure drug 

Cardiac stimulant 159 
Diuretic 100 

ACE 229 
Coronary vasodilator (in-

cludes combination products 
with Ca antagonist and statin) 

707 

Beta blocker 105 
Alpha Beta blocker 60 

ARB (includes combination 
products with diuretic and Ca 

antagonist) 

1039 

Dyslipidemia Statins (includes combination 
products with small intestinal 
cholesterol transporter inhibi-

tor and Ca antagonist) 

384 

SGLT2 inhibitor 11 
Diabetes DPP-4 inhibitor (includes 

combination products with 
insulin resistance improving 
drug, biguanide formulation, 

and SGLT2 inhibitor) 

45 

 

Table 1: Drug categories 



 

 

Ø Total cholesterol 
Ø Body mass index (BMI) 
Ø Hemoglobin A1c 
Ø C-reactive protein (CRP) 
Ø Systolic blood pressure (SBP) 
Ø Diastolic blood pressure (DBP) 

All those test results are recorded as time-series data and we 
use statistics for couple of time windows as features. Details 
are explained below. 

As for drugs, we have a myriad of product variations in-
cluding generic products so we categorized those into groups 
which are considered to be related to CVD as explained in 
Table 1. Note that category and products are coded using a 
Japanese drug coding system named YJ code [JAPIC, 2020]. 
Same as lab tests, such drug usages are recorded as time-se-
ries data. The followings describe the details of processing 
those along to the time windows. We also included some 
combination drugs, because they contain chemical sub-
stances we want to see. As for those combination drugs, the 
number of products are double counted. Each single drug in 
the combination agent is used independently as an explana-
tory variable as explained later. 

Time-Series Features for CVD Predictive Model 
For conducting risk assessment of time-varying features like 
lab tests taking the time structure into account, this study uses 
a time-window-based approach. We provide several time 
windows in which we compute statistics of time-series data, 
which are separately used as explanatory variables inputted 
into the models. By doing so, when using interpretable ma-
chine learning models, influence, the other word, the risk of 
such window-based explanatory variables can be illustrated 
using the importance. 

For the CVD predictive model, we constructed time-series 
features based on three of time windows before CKD onset. 
Figure 2 depicts such feature formulation. We first make 
three six-month-long time windows which include the first 
six-month-long window which ends at CKD onset date, being 
preceded by second and third six-month long windows. Note 
that those three windows are disjoint. 

For each window, we then compute average values of 
time-series-data of lab tests results for the kidney function 

and others listed in Section 3.3, forming 14 x 3 = 42 explan-
atory variables. 

Time-Series Features for CVD Explanatory Model 
Additional to the aforementioned lab tests time-series explan-
atory variables, we consider examining time-series values of 
drug usages. Same as above we use a time-window approach 
to summarize such values. 

For the CVD explanatory model, we constructed time-se-
ries features based on time windows just before CVD onset. 
Figure 3 depicts such feature formulation, where we use a six-
month-long time window just begore CVD onset and com-
pute statistics in it. For the large category in Table 1, except 
for anemia drugs, we counted prescriptions of drugs in each 
category in the window, forming 4 explanatory variables. For 
the small category, except for ESA formulation, we also 
counted prescriptions of drugs in each category in the win-
dow. We included combination products so we  also counted 
insulin resistance improving drugs, biguanide formulations, 
small intestinal cholesterol transporter inhibitors, and Ca an-
tagonists. Note that they are counted only when used as com-
bination products as listed in Table 1. In total they come to 
15 explanatory variables. Lastly, we used two ESA related 
explanatory variables. One is ESA dosage amount in the win-
dow, while the other is the disease duration of anemia before 
taking ESA, forming two other variables. 

3.4 Model Construction 
By assigning positive labels to samples in the CVD group 

and negative labels to samples in the non-CVD group, we 
constructed predictive and explanatory models using ma-
chine learning algorithms. For explanatory variables, the 
missing values corresponding to each laboratory test were 
imputed via the last observation carried forward method. If 
no data were available for a test, the mean value of the corre-
sponding training data was used instead. Additionally, all the 
values were standardized. 

In the  following step, by using the aforementioned covari-
ates and training labels, we applied the Random Forest (RF), 
Logistic Regression (LR), and Decision Tree using Python 
scikit-learn library (https://scikit-learn.org/) to create classi-
fication models. We optimized the models by fine-tuning the 

Figure 2: Time-series data processing for predictive model  Figure 3: Time-series data processing for explanatory model  



 

 

hyperparameters of the algorithms. After identifying the op-
timal parameters via inner four-fold cross validation, we eval-
uated these models using outer five-fold cross validation.  

4 Experimental Results 
Using learned models we evaluated those performance. Table 
2 shows the classification results when using the best-per-
forming algorithm. Both remarked good enough scores as 
predictive and explanatory models. Figures 4 and 5 show the 
resultant important factors of predictive and explanatory 
models. Note that we used coefficients of  the Logistic Re-
gression result taking feature interactions into account. In 
both, age is marked as the best influential factor. 

In Figure 4, other than age, kidney function related factors 
including BUN, serum albumin, and eGFR in the nearest win-
dow marked high for the predictive model. This means at the 
point of CKD onset, where eGFR marks not so low, the kid-
ney functionality could affect CVD in 5 years. CRP and blood 
pressure are also marked as risk factors so we could find CVD 

signs in kidney and heart even at the CKD onset point. As for 
far windows to CKD onset, we did not observe conspicuous 
risk factors. We would expect a use of another statistics such 
as standard deviation, or smaller windows could show addi-
tional interesting observations. 

For the explanatory model, the large category of hyperten-
sion or heart failure drug marks second important in Figure 5. 
It is expected that usage of cardiac stimulants and diuretics of 
getting higher as the risk of CVD is growing. It is remarkable 
that we observed statins as an important risk factor, which 
thought to be beneficial to keeping healthy status of coronary 
vessels. 

5 Conclusions 
This paper discussed modeling approaches when we consider 
illustrative results in the presence of time-series variables. In 
the light of obtaining good performance, our approach is sim-
ple and promising to examine temporal structures of time-se-
ries data. Our approach also shows good practice to illustrate 
and explain temporal structures features, especially in lab 
tests. We can conclude that our results have high interpreta-
bility and definitely solicit medical and pharmacological in-
terests. It is also thought that possible variation of window 
size and statistics metrics would give more intriguing results. 

 Predictive Model Explanatory Model 

AUC 0.77 0.90 
Algorithm RF LR 

 

Table 2: Best Prediction Performance 

Figure 4: Important factors of CVD prediction model 

Figure 5: Important factors of CVD explanatory model 
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